Nanomedicine & biomaterials


Traditional treatments of severe diseases, such as cancer or infectious diseases, generally involves highly toxic compounds for healthy tissues, and their uses in therapy are considerably limited by occurrence of dramatic side effects. Nanomedicine, as the medical application of Nanotechnology, is a promising alternative to overcome the problems of the administration of peptides, proteins, nucleic acids and of the new drug small molecules coming out of the discovery pipeline.

In NANOMOL we have strong expertise in the design of efficient methodologies to prepare nanoparticulate materials (i.e. polymer particles, micelles, nanocapsules, vesicles, polymer-drug conjugates) to be used in new drug delivery systems with tailored properties, including biocompatibility, size, structure, gating, addressability, and biofunctionality. By DELOS-family processes, based on compressed fluids, we make possible to design nanoparticulate delivery vehicles for transporting therapeutic actives to protect them from early degradation, prevent their premature interaction with the biological environment, facilitate higher payloads, prolong their circulation life-time, improve drug targeting and solubility and provide controlled release of the therapeutics into the blood stream or the target tissues or organs.

DELOS-susp is a simple, rapid, easily controlled, and robust method enabling to produce Small Unilamellar Vesicles (SUVs). It is easily scalable, does not require complex equipment, provides elevated production yields. It provides SUVs with higher compositional homogeneity than the one attained by conventional hydration procedures.


For recent relevant publications on this topic see:

  • E. Elizondo, J. Larsen, Nikos S. Hatzakis, I. Cabrera, T. Bjørnholm, J. Veciana, D. Stamou, and N. Ventosa, J. Am. Chem.Soc., 2012, 134, 1918−1921.
  • E. Imbuluzqueta, C. Gamazo, H. Lana, M.A. Campanero, D. Salas, A.G. Gil, E. Elizondo, N. Ventosa, J. Veciana, M.J. Blanco-Prieto, Antimicrob. Agents Chemother. 2013, 57, 3326-3333.
  • L. Ferrer-Tasies, E. Moreno-Calvo, M. Cano-Sarabia, M. Aguilella-Arzo, A. Angelova, S. Lesieur, S. Ricart, J. Faraudo, N. Ventosa, J. Veciana, Langmuir, 2013, 29, 6519-6528.
  • I. Cabrera, E. Elizondo, O. Esteban, J-L. Corchero, M. Melgarejo, D. Pulido, A. Cordoba, E. Moreno, U. Unzueta, E. Vázquez, I. Abasolo, S. Schwartz Jr., A. Villaverde, F. Albericio, M. Royo, M.F. García-Parajo, N. Ventosa, J. Veciana, Nano Lett. 2013, 13, 3766-3774.
  • E. Moreno-Calvo, F. Temelli, A. Cordoba, N. Masciocchi, J. Veciana, N. Ventosa, Cryst. Growth Des. 2014, 14, 58-68.


There are nowadays many expectations in the field of regenerative medicine and tissue engineering for new biocompatible materials that combine the intrinsic biological functions of natural tissues (biocompatibility, biological activity, etc..) with the typical properties of artificial materials (processability, low-cost, mechanical properties, etc). Recently our group has demonstrated that bottom-up decoration with bacterial inclusion bodies (IBs), which are mechanically stable, biocompatible particulate materials with genetically controlled nanoscale properties (including size, shape and stiffness), can modify the roughness of certain surfaces stimulating the colonization and proliferation of mammalian cells. We have provided an appropriate nano and micro engineering of cellular environments is a straightforward instrument for the promotion of cell growth and differentiation in tissue engineering. Such kind of advanced materials and others we work with could solve important problems that are poorly resolved or unresolved, in the field of implants and tissular regeneration.

biomaterials15 For recent relevant publications on this topic see:

  • E. García-Fruitós, E. Vázquez, C. Díez-Gil, J. L. Corchero, J. Seras-Franzoso, I. Ratera, J. Veciana, A. Villaverde, Trends in Biotechnology, 2012, 30, 65–70.
  • J. Seras-Franzoso, C. Díez-Gil, E. Vazquez, E. García-Fruitós, R. Cubars, I. Ratera, J. Veciana, A. Villaverde, Nanomedicine (Lond), 2012, 7, 79-93.
  • O. Cano-Garrido, E. Rodríguez-Carmona, C. Diez-Gil, E. Vázquez, E. Elizondo, R. Cubarsi, J. Seras-Franzoso, J.L. Corchero, U. Rinas, I. Ratera, N. Ventosa, J. Veciana, A. Villaverde, E. García-Fruitós, Acta Biomaterialia, 2013, 9, 6134-6142.
  • M. Virtudes-Céspedes, U. Unzueta, W. I. Tatkiewicz, A. Sánchez-Chardi, O. Conchillo-Solé, P. Álamo, Z. Xu, I. Casanova, J.L. Corchero, M. Pesarrodona, J. Cedano, X. Daura, I. Ratera, J. Veciana, N. Ferrer-Miralles, E. Vázquez, A. Villaverde, R. Mámguez. ACS Nano, 2014, 8, 4166-4176.
  • J. Seras-Franzoso, W. I. Tatkiewicz, E. Vazquez, E. García-Fruitós, I. Ratera, J. Veciana, A. Villaverde, Nanomedicine (Lond), 2015, 10, 873-891.
logoicmabgrises logocsic logociber-bnn nanbiosis bn ACCIO ESCALA DE GRISOS TECNIO HORITZONTAL 287 66 logopruab
You are here: Home Research lines Nanomedicine & biomaterials