Publications

The results of the organic electronics group related to the study of transport through molecules, the preparation and characterization of molecular switches, in solution and on surface as self-assembled monolayers (SAMs), and the fabrication of organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs) have given rise to the following SCI publications.
 

2016

Publications 2016 Marta Mas
  • [35] High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation
    Q. Zhang, F. Leonardi, S. Casalini, I. Temiño, M. Mas-Torrent, Scientific Reports, 2016, accepted.
  • [34] Covalent modification of highly ordered pyrolytic graphite with a stable organic free radical using diazonium chemistry
    G. Seber; A. Rudnev; A. Droghetti; I. Rungger; J. Veciana; M. Mas-Torrent; C. Rovira; N. Crivillers, Chem Eur. J. 2016, DOI: 10.1002/chem.201604700
  • [33] Electrolyte-Gated Organic Field-Effect Transistor Based on a Solution Sheared Organic Semiconductor Blend.
    F. Leonardi, S. Casalini, A. Zhang, S. Galindo, D. Gutiérrez, M. Mas-Torrent, Adv. Mater. 2016, DOI:10.1002/adma.201602479
  • [32] A redox-active radical as an effective nanoelectronic component: stability and electrochemical tunnelling spectroscopy in ionic liquids
    A. V. Rudnev, C. Franco, N. Crivillers, G. Seber, A. Droghetti, I. Rungger, I. V. Pobelov, J. Veciana, M. Mas-Torrent, C. Rovira, PCCP, 2016, 18, 27733.
  • [31] Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy
    S. Wood, G. P. Rigas, A. Zoladek-Lemanczyk, J. C. Blakesley, S. Georgakopoulos, M. Mas-Torrent, M. Shkunov, F. A. Castro, Scientific Reports, 2016, 6, 33057.
  • [30] Structural and electronic characterisation of -extended tetrathiafulvalene derivatives as active components in field-effect transistors
    A. Campos, N. Oxtoby, S. Galindo, R. Pfattner, J. Veciana, S. T. Bromley, C. Rovira, M. Mas-Torrent, CrystEngComm, 2016, 18, 6149.
  • [29] Chemical control over the energy level alignment in a two-terminal junction
    L. Yuan, C. Franco, N. Crivillers, M. Mas-Torrent, C. S. S. Sangeeth, C. Rovira, J. Veciana, C. A. Nijhuis, Nat. Commun. 2016, 7, 12066.
  • [28] Rapid, Low-Cost, and Scalable Technique for Printing State-of-the-Art OrganicField-Effect Transistors
    I. Temiño , F.G.Del Pozo,A.Murugan, S. Galindo, S. Galindo, J. Puigdollers, M. Mas-Torrent, Adv. Mater. Technol. 2016, 1,1600090.
  • [27] A surface confined yttrium(III) bis-phthalocyaninato complex: a colourful switch controlled by electrons
    I. Alcón, M. Gonidec, M. R. Ajayakumar, M. Mas-Torrent, J. Veciana, Chem. Sci. 2016, 7, 4940.
  • [26] Donor/acceptor mixed self-assembled monolayers for realizing a multiredox-state surface
    J. Casado-Montenegro, E. Marchante, N. Crivillers, C. Rovira, M. Mas-Torrent, ChemPhysChem, ChemPhysChem, 2016, 17,1810.
  • [25] Large-Size Star-Shaped Conjugated (Fused) Triphthalocyaninehexaazatriphenylene
    V. M. Blas-Ferrando, J. Ortiz, J. Follana-Berná, F. Fernández-Lázaro, A. Campos, M. Mas-Torrent, A. Sastre-Santos, Org. Lett. 2016, 18, 1466.
  • [24] Single crystal-like performance in solution-coated thin-film organic field-effect transistors.
    F. G. Del Pozo, S. Fabiano, R. Pfattner, S. Georgakopoulos, S. Galindo, X. Liu, S. Braun, M. Fahlman, J. Veciana, C. Rovira, X. Crispin, M. Berggren, M. Mas-Torrent, Adv. Funct. Mater. 2016, 26, 2379.
  • [23] An Electrically Driven and Readable Molecular Monolayer Switch Based on a Solid Electrolyte
    E. Marchante, N. Crivillers, M. Buhl, J. Veciana, M. Mas-Torrent, Angew. Chemie - Int. Ed. 2016, 55, 368.
  • [22] Tuning crystal ordering, electronic structure, and morphology in organic semiconductors: Tetrathiafulvalenes as a model case
    R. Pfattner, S. T. Bromley, C. Rovira, M. Mas-Torrent, Adv. Funct. Mater. 2016, 26, 2256.

2015

Publications 2015 Marta Mas
  • [21] Deposition of composite materials using a wire-bar coater for achieving processability and air-stability in organic field-effect transistors (OFETs)
    F. G. Del Pozo, S. Galindo, R. Pfattner, C. Rovira, M. Mas-Torrent, in Proc. SPIE - Int. Soc. Opt. Eng., 2015, 9568, 95680D-1.
  • [20] Pyrene-Based Dyad and Triad Leading to a Reversible Chemical and Redox Optical and Magnetic Switch
    C. Franco, M. Mas-Torrent, A. Caballero, A. Espinosa, P. Molina, J. Veciana, C. Rovira, Chem. - A Eur. J. 2015, 21, 5504.
  • [19] Kondo effect in a neutral and stable all organic radical single molecule break junction
    R. Frisenda, R. Gaudenzi, C. Franco, M. Mas-Torrent, C. Rovira, J. Veciana, I. Alcon, S. T. Bromley, E. Burzurí, H. S. J. Van Der Zant, Nano Lett. 2015, 15, 3109.
  • [18] Flexible organic transistors based on a solution-sheared PVDF insulator
    S. Georgakopoulos, F. G. Del Pozo, M. Mas-Torrent, J. Mater. Chem. C 2015, 3, 12199.
  • [17] Changes of the Molecular Structure in Organic Thin Film Transistors during Operation
    F. Liscio, L. Ferlauto, M. Matta, R. Pfattner, M. Murgia, C. Rovira, M. Mas-Torrent, F. Zerbetto, S. Milita, F. Biscarini, J. Phys. Chem. C 2015, 119, 15912.
  • [16] A Methyl-Substituted Thiophene-Tetra¬thiafulvalene Donor and Its Salts
    R. A. L. Silva, I. C. Santos, E. B. Lopes, S. Rabaça, S. Galindo, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2015, 2015, 5003.

2014

Publications 2014 Marta Mas
  • [15] A compact tetrathiafulvalene-benzothiadiazole dyad and its highly symmetrical charge-transfer salt: Ordered donor π-stacks closely bound to their acceptors
    Y. Geng, R. Pfattner, A. Campos, J. Hauser, V. Laukhin, J. Puigdollers, J. Veciana, M. Mas-Torrent, C. Rovira, S. Decurtins, S.-X. Liu, Chem. - A Eur. J. 2014, 20, 7136.
  • [14] HOMO Stabilisation in π-Extended Dibenzotetrathiafulvalene Derivatives for Their Application in Organic Field-Effect Transistors
    Y. Geng, R. Pfattner, A. Campos, W. Wang, O. Jeannin, J. Hauser, J. Puigdollers, S. T. Bromley, S. Decurtins, J. Veciana, C. Rovira, M. Mas-Torrent, S.-X. Liu, Chem. - A Eur. J. 2014, 20, 16672.
    [13] Restraints in low dimensional organic semiconductor devices at high current densities
    R. Pfattner, C. Moreno, C. Voz, R. Alcubilla, C. Rovira, J. Puigdollers, M. Mas-Torrent, Org. Electron. physics, Mater. Appl. 2014, 15, 211.
  • [12] Organic metal engineering for enhanced field-effect transistor performance
    R. Pfattner, C. Rovira, M. Mas-Torrent, Phys. Chem. Chem. Phys. 2014, 17, 26545.

2013

Publications 2013 Marta Mas
  • [11] Tetrathiafulvalene-based mixed-valence acceptor-donor-acceptor triads: A joint theoretical and experimental approach
    J. Calbo, J. Aragó, F. Otón, V. Lloveras, M. Mas-Torrent, J. Vidal-Gancedo, J. Veciana, C. Rovira, E. Ortí, Chem. - A Eur. J. 2013, 19, 16656.
  • [10] Electrochemical and chemical tuning of the surface wettability of tetrathiafulvalene self-assembled monolayers
    J. Casado-Montenegro, M. Mas-Torrent, F. Otón, N. Crivillers, J. Veciana, C. Rovira, Chem. Commun. 2013, 49, 8084.
  • [9] Electrochemical and magnetic properties of a surface-grafted novel endohedral metallofullerene derivative
    N. Crivillers, Y. Takano, Y. Matsumoto, J. Casado-Montenegro, M. Mas-Torrent, C. Rovira, T. Akasaka, J. Veciana, Chem. Commun. 2013, 49, 8145.
  • [8] Harnessing electron transfer from the perchlorotriphenylmethide anion to Y@C82(C2v) to engineer an endometallofullerene-based salt
    I. E. Kareev, E. Laukhina, V. P. Bubnov, V. M. Martynenko, V. Lloveras, J. Vidal-Gancedo, M. Mas-Torrent, J. Veciana, C. Rovira, ChemPhysChem 2013, 14, 1670.
  • [7] Surface-confined electroactive molecules for multistate charge storage information
    M. Mas-Torrent, C. Rovira, J. Veciana, Adv. Mater. 2013, 25, 462.
  • [6] Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a π-conjugated donor-acceptor dyad
    R. Pfattner, E. Pavlica, M. Jaggi, S.-X. Liu, S. Decurtins, G. Bratina, J. Veciana, M. Mas-Torrent, C. Rovira, J. Mater. Chem. C 2013, 1, 3985.
  • [5] α-dithiophene-tetrathiafulvalene-a detailed study of an electronic donor and its derivatives
    R. A. L. Silva, A. I. Neves, M. L. Afonso, I. C. Santos, E. B. Lopes, F. Del Pozo, R. Pfattner, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2013, 2440.
  • [4] Intramolecular electron transfer in the photodimerisation product of a tetrathiafulvalene derivative in solution and on a surface
    C. Simao, M. Mas-Torrent, V. André, M. T. Duarte, J. Veciana, C. Rovira, Chem. Sci. 2013, 4, 307.
  • [3] Solid state photodimerisation of tetrathiafulvalene derivatives bearing carboxylate and carboxylic acid substituents
    C. Simao, M. Mas-Torrent, V. André, M. Teresa Duarte, S. Techert, J. Veciana, C. Rovira, CrystEngComm 2013, 15, 9878.
  • [2] Robust molecular micro-capsules for encapsulating and releasing hydrophilic contents
    F. Vera, M. Mas-Torrent, C. Avci, J. Arbiol, J. Esquena, C. Rovira, J. Veciana, Chem. Commun. 2013, 49, 7827.

2012

Publications 2012 Marta Mas
  • [1] Attaching persistent organic free radicals to surfaces: How and why
    M. Mas-Torrent, N. Crivillers, C. Rovira, J. Veciana, Chem. Rev. 2012, 112, 2506.

The results of the organic electronics group related to the study of transport through molecules, the preparation and characterization of molecular switches, in solution and on surface as self-assembled monolayers (SAMs), and the fabrication of organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs) have given rise to the following SCI publications.

Publications

2017

  • Publications Marta Mas Torrent

2016

Unimolecular electronics and spintronics

Unimolecular electronics and spintronics

unimolecular electronics and spintronics

Within the research topic “unimolecular electronics and spintronics”, we are working on the synthesis of organic electroactive materials and organic radicals to integrate them in molecular electronic devices. We are also interested in the emerging field of molecular spintronics.

Facilities for the fabrication of organic/molecular electronic devices.

In the organic electronic group we have available the necessary advanced facilities for preparing and processing organic materials as well as for characterizing and fabricating organic/molecular electronic devices.

 

  • Bar Assisted Meniscus Shearing (BAMS): Equipment home-designed for processing organic semiconductors in thin films.
  • Glove Box with electrical measurement system and organic evaporator inside.
  • Electrical Measurement Systems: Probe Stations, Agilent Semiconductor Device Analyzer and several voltage/source meters

Organic field-effect transistors (OFETs) and Electrolyte-gated field-effect transistors (EGOFETs)

organic field effect transistors

The fabrication of organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs) is one of the main research pillars of the organic electronics group. Our interest goes from the processing of organic semiconductor films, the understanding of material and transport properties and the fabrication of innovative high performing devices.

Publications 2016 Marta Mas

  • [35] High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation
    Q. Zhang, F. Leonardi, S. Casalini, I. Temiño, M. Mas-Torrent, Scientific Reports, 2016, accepted.
  • [34] Covalent modification of highly ordered pyrolytic graphite with a stable organic free radical using diazonium chemistry
    G. Seber; A. Rudnev; A. Droghetti; I. Rungger; J. Veciana; M. Mas-Torrent; C. Rovira; N. Crivillers, Chem Eur. J. 2016, DOI: 10.1002/chem.201604700
  • [33] Electrolyte-Gated Organic Field-Effect Transistor Based on a Solution Sheared Organic Semiconductor Blend.
    F. Leonardi, S. Casalini, A. Zhang, S. Galindo, D. Gutiérrez, M. Mas-Torrent, Adv. Mater. 2016, DOI:10.1002/adma.201602479
  • [32] A redox-active radical as an effective nanoelectronic component: stability and electrochemical tunnelling spectroscopy in ionic liquids
    A. V. Rudnev, C. Franco, N. Crivillers, G. Seber, A. Droghetti, I. Rungger, I. V. Pobelov, J. Veciana, M. Mas-Torrent, C. Rovira, PCCP, 2016, 18, 27733.
  • [31] Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy
    S. Wood, G. P. Rigas, A. Zoladek-Lemanczyk, J. C. Blakesley, S. Georgakopoulos, M. Mas-Torrent, M. Shkunov, F. A. Castro, Scientific Reports, 2016, 6, 33057.
  • [30] Structural and electronic characterisation of -extended tetrathiafulvalene derivatives as active components in field-effect transistors
    A. Campos, N. Oxtoby, S. Galindo, R. Pfattner, J. Veciana, S. T. Bromley, C. Rovira, M. Mas-Torrent, CrystEngComm, 2016, 18, 6149.
  • [29] Chemical control over the energy level alignment in a two-terminal junction
    L. Yuan, C. Franco, N. Crivillers, M. Mas-Torrent, C. S. S. Sangeeth, C. Rovira, J. Veciana, C. A. Nijhuis, Nat. Commun. 2016, 7, 12066.
  • [28] Rapid, Low-Cost, and Scalable Technique for Printing State-of-the-Art OrganicField-Effect Transistors
    I. Temiño , F.G.Del Pozo,A.Murugan, S. Galindo, S. Galindo, J. Puigdollers, M. Mas-Torrent, Adv. Mater. Technol. 2016, 1,1600090.
  • [27] A surface confined yttrium(III) bis-phthalocyaninato complex: a colourful switch controlled by electrons
    I. Alcón, M. Gonidec, M. R. Ajayakumar, M. Mas-Torrent, J. Veciana, Chem. Sci. 2016, 7, 4940.
  • [26] Donor/acceptor mixed self-assembled monolayers for realizing a multiredox-state surface
    J. Casado-Montenegro, E. Marchante, N. Crivillers, C. Rovira, M. Mas-Torrent, ChemPhysChem, ChemPhysChem, 2016, 17,1810.
  • [25] Large-Size Star-Shaped Conjugated (Fused) Triphthalocyaninehexaazatriphenylene
    V. M. Blas-Ferrando, J. Ortiz, J. Follana-Berná, F. Fernández-Lázaro, A. Campos, M. Mas-Torrent, A. Sastre-Santos, Org. Lett. 2016, 18, 1466.
  • [24] Single crystal-like performance in solution-coated thin-film organic field-effect transistors.
    F. G. Del Pozo, S. Fabiano, R. Pfattner, S. Georgakopoulos, S. Galindo, X. Liu, S. Braun, M. Fahlman, J. Veciana, C. Rovira, X. Crispin, M. Berggren, M. Mas-Torrent, Adv. Funct. Mater. 2016, 26, 2379.
  • [23] An Electrically Driven and Readable Molecular Monolayer Switch Based on a Solid Electrolyte
    E. Marchante, N. Crivillers, M. Buhl, J. Veciana, M. Mas-Torrent, Angew. Chemie - Int. Ed. 2016, 55, 368.
  • [22] Tuning crystal ordering, electronic structure, and morphology in organic semiconductors: Tetrathiafulvalenes as a model case
    R. Pfattner, S. T. Bromley, C. Rovira, M. Mas-Torrent, Adv. Funct. Mater. 2016, 26, 2256.

Patents

The organic electronics group is also interested in developing proof-of-concepts devices based on their knowledge on organic materials and molecular devices and, when necessary, patents are filed to protect the IPR of the group.

  • [1] “Fabrication process of an organic semiconductor film, organic semiconductor film and electronic device containing it”. Nº. ES P201430839, 2/6/2014. PCT/ES2015/070427

Projects funding our organic electronics research

The organic electronics group is continuously searching and applying for different funding programs at the national and international level in order to develop their research which aims at gaining new insights in the field of unimolecular electronics and spintronics and fabricating novel organic/molecular devices such as molecular switches, functional self-assembled monolayers, organic-field effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs).

 

  • HI-TECH platform for LABel-free biosensors (HITECH_LAB)” TecnioSpring- Marie Curie ”TECSPR15-1-0012 (15/3/2016- 15/3/2018); PI: Marta Mas-Torrent, Stefano Casalini.
  • i-Switch Integrated self-assembled SWITCHable systems and materials: towards responsive organic electronics – a multi-site innovative training action” H2020-MSCA-ITN-2014-642196, 1/1/2015-31/12/2018. PI: Concepció Rovira.
  • ERC Proof-of-Concept: “Large Area Organic Devices with bar assisted meniscus shearing technology”. Grant Agreement: 640120; 1/12/2014-20/11/2015; PI: Marta Mas-Torrent
  • ERC Starting Grant: "Surface Self-Assembled Molecular Electronic Devices: Logic Gates, Memories and Sensors". Grant Agreement: 306826; 1/12/2012-30/11/2017;1500 k€. PI: Marta Mas-Torrent.
  • BE-WELL. Bio- and Electro-active molecule-based materials for improving health andsocietal WELLbeing CTQ2013-40480-R, Ministerio de Economia y Competitividad; 01/01/2014 - 31/12/2016; PI: Jaume Veciana.
  • Electromagic Multifunctional surfaces structured with electroactive and magnetic molecules for electronic and spintronic devices”. Marie-Curie Action; FP7-PEOPLE-2011-CIG (Career Integration Grant); GA 303989. 01/06/2012 - 31/05/2015; 75.000,00€. PI: Núria Crivillers and Jaume Veciana.
  • ACMOL Electrical spin manipulation in electroACtive MOLecules” FP7-ICT-FET Open-Young Explorers-2013, GA 618082. 1/1/2014-31/12/2016; 332.495,00€. PI: Núria Crivillers
  • i-LINK+” Towards molecule based-devices: control and understanding of transport through molecules. PROGRAMA CSIC CONEXIÓN INTERNACIONAL PARA LA PROMOCIÓN DE LA COLABORACIÓN CIENTÍFICA INTERNACIONAL DEL CSIC CON INSTITUCIONES EXTRANJERAS. 01/01/2014 - 31/12/2015. 16.000,00 €. PI: Jaume Veciana

Publications 2015 Marta Mas

  • [21] Deposition of composite materials using a wire-bar coater for achieving processability and air-stability in organic field-effect transistors (OFETs)
    F. G. Del Pozo, S. Galindo, R. Pfattner, C. Rovira, M. Mas-Torrent, in Proc. SPIE - Int. Soc. Opt. Eng., 2015, 9568, 95680D-1.
  • [20] Pyrene-Based Dyad and Triad Leading to a Reversible Chemical and Redox Optical and Magnetic Switch
    C. Franco, M. Mas-Torrent, A. Caballero, A. Espinosa, P. Molina, J. Veciana, C. Rovira, Chem. - A Eur. J. 2015, 21, 5504.
  • [19] Kondo effect in a neutral and stable all organic radical single molecule break junction
    R. Frisenda, R. Gaudenzi, C. Franco, M. Mas-Torrent, C. Rovira, J. Veciana, I. Alcon, S. T. Bromley, E. Burzurí, H. S. J. Van Der Zant, Nano Lett. 2015, 15, 3109.
  • [18] Flexible organic transistors based on a solution-sheared PVDF insulator
    S. Georgakopoulos, F. G. Del Pozo, M. Mas-Torrent, J. Mater. Chem. C 2015, 3, 12199.
  • [17] Changes of the Molecular Structure in Organic Thin Film Transistors during Operation
    F. Liscio, L. Ferlauto, M. Matta, R. Pfattner, M. Murgia, C. Rovira, M. Mas-Torrent, F. Zerbetto, S. Milita, F. Biscarini, J. Phys. Chem. C 2015, 119, 15912.
  • [16] A Methyl-Substituted Thiophene-Tetra¬thiafulvalene Donor and Its Salts
    R. A. L. Silva, I. C. Santos, E. B. Lopes, S. Rabaça, S. Galindo, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2015, 2015, 5003.

Publications 2014 Marta Mas

  • [15] A compact tetrathiafulvalene-benzothiadiazole dyad and its highly symmetrical charge-transfer salt: Ordered donor π-stacks closely bound to their acceptors
    Y. Geng, R. Pfattner, A. Campos, J. Hauser, V. Laukhin, J. Puigdollers, J. Veciana, M. Mas-Torrent, C. Rovira, S. Decurtins, S.-X. Liu, Chem. - A Eur. J. 2014, 20, 7136.
  • [14] HOMO Stabilisation in π-Extended Dibenzotetrathiafulvalene Derivatives for Their Application in Organic Field-Effect Transistors
    Y. Geng, R. Pfattner, A. Campos, W. Wang, O. Jeannin, J. Hauser, J. Puigdollers, S. T. Bromley, S. Decurtins, J. Veciana, C. Rovira, M. Mas-Torrent, S.-X. Liu, Chem. - A Eur. J. 2014, 20, 16672.
    [13] Restraints in low dimensional organic semiconductor devices at high current densities
    R. Pfattner, C. Moreno, C. Voz, R. Alcubilla, C. Rovira, J. Puigdollers, M. Mas-Torrent, Org. Electron. physics, Mater. Appl. 2014, 15, 211.
  • [12] Organic metal engineering for enhanced field-effect transistor performance
    R. Pfattner, C. Rovira, M. Mas-Torrent, Phys. Chem. Chem. Phys. 2014, 17, 26545.

Publications 2013 Marta Mas

  • [11] Tetrathiafulvalene-based mixed-valence acceptor-donor-acceptor triads: A joint theoretical and experimental approach
    J. Calbo, J. Aragó, F. Otón, V. Lloveras, M. Mas-Torrent, J. Vidal-Gancedo, J. Veciana, C. Rovira, E. Ortí, Chem. - A Eur. J. 2013, 19, 16656.
  • [10] Electrochemical and chemical tuning of the surface wettability of tetrathiafulvalene self-assembled monolayers
    J. Casado-Montenegro, M. Mas-Torrent, F. Otón, N. Crivillers, J. Veciana, C. Rovira, Chem. Commun. 2013, 49, 8084.
  • [9] Electrochemical and magnetic properties of a surface-grafted novel endohedral metallofullerene derivative
    N. Crivillers, Y. Takano, Y. Matsumoto, J. Casado-Montenegro, M. Mas-Torrent, C. Rovira, T. Akasaka, J. Veciana, Chem. Commun. 2013, 49, 8145.
  • [8] Harnessing electron transfer from the perchlorotriphenylmethide anion to Y@C82(C2v) to engineer an endometallofullerene-based salt
    I. E. Kareev, E. Laukhina, V. P. Bubnov, V. M. Martynenko, V. Lloveras, J. Vidal-Gancedo, M. Mas-Torrent, J. Veciana, C. Rovira, ChemPhysChem 2013, 14, 1670.
  • [7] Surface-confined electroactive molecules for multistate charge storage information
    M. Mas-Torrent, C. Rovira, J. Veciana, Adv. Mater. 2013, 25, 462.
  • [6] Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a π-conjugated donor-acceptor dyad
    R. Pfattner, E. Pavlica, M. Jaggi, S.-X. Liu, S. Decurtins, G. Bratina, J. Veciana, M. Mas-Torrent, C. Rovira, J. Mater. Chem. C 2013, 1, 3985.
  • [5] α-dithiophene-tetrathiafulvalene-a detailed study of an electronic donor and its derivatives
    R. A. L. Silva, A. I. Neves, M. L. Afonso, I. C. Santos, E. B. Lopes, F. Del Pozo, R. Pfattner, M. Mas-Torrent, C. Rovira, M. Almeida, D. Belo, Eur. J. Inorg. Chem. 2013, 2440.
  • [4] Intramolecular electron transfer in the photodimerisation product of a tetrathiafulvalene derivative in solution and on a surface
    C. Simao, M. Mas-Torrent, V. André, M. T. Duarte, J. Veciana, C. Rovira, Chem. Sci. 2013, 4, 307.
  • [3] Solid state photodimerisation of tetrathiafulvalene derivatives bearing carboxylate and carboxylic acid substituents
    C. Simao, M. Mas-Torrent, V. André, M. Teresa Duarte, S. Techert, J. Veciana, C. Rovira, CrystEngComm 2013, 15, 9878.
  • [2] Robust molecular micro-capsules for encapsulating and releasing hydrophilic contents
    F. Vera, M. Mas-Torrent, C. Avci, J. Arbiol, J. Esquena, C. Rovira, J. Veciana, Chem. Commun. 2013, 49, 7827.

Publications 2012 Marta Mas

  • [1] Attaching persistent organic free radicals to surfaces: How and why
    M. Mas-Torrent, N. Crivillers, C. Rovira, J. Veciana, Chem. Rev. 2012, 112, 2506.

Organic field-effect transistors (OFETs)

organic field effect transistors

The fabrication of organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs) is one of the main research pillars of the organic electronics group. Our interest goes from the processing of organic semiconductor films, the understanding of material and transport properties and the fabrication of innovative high performing devices.

Marta Mas' lab

mas

Dr. Marta Mas-Torrent’s research group is focused on the design and synthesis/preparation of new functional molecular materials for their application in organic/molecular electronic devices. This is an interdisciplinary group where researchers from different disciplines (i.e., chemistry, materials science, physics, engineering, etc.) are working together. Our work ranges from fundamental studies in order to better understand materials properties to a more applied perspective aiming at developing proof-of-principle devices. Particularly, our areas of interest include synthesis of novel functional molecules (electroactive molecules, organic radicals, etc.), surface self-assembly, crystal engineering, molecular switches, organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs), charge transport and organic-based (bio)-sensors.

Scientific Topics of our research on organic materials and molecular electronic devices

The main scientific topics of the group are related to the preparation and characterization of novel organic molecular materials and their application in molecular electronic devices. In particular, our interests include: 1) unimolecular electronics and spintronics, 2) molecular switches and on surface (self-assembled monolayers, SAM) and 3) organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs).

Marta Mas' lab - Top

mas

Dr. Marta Mas-Torrent’s research group is focused on the design and synthesis/preparation of new functional molecular materials for their application in organic/molecular electronic devices. This is an interdisciplinary group where researchers from different disciplines (i.e., chemistry, materials science, physics, engineering, etc.) are working together. Our work ranges from fundamental studies in order to better understand materials properties to a more applied perspective aiming at developing proof-of-principle devices. Particularly, our areas of interest include synthesis of novel functional molecules (electroactive molecules, organic radicals, etc.), surface self-assembly, crystal engineering, molecular switches, organic field-effect transistors (OFETs) and electrolyte-gated field-effect transistors (EGOFETs), charge transport and organic-based (bio)-sensors.